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The cubed-sphere gravitational model is a modification of a base model, e.g., the spherical harmonic model, to

allow for the fast evaluation of acceleration. The model consists of concentric spheres, each mapped to the surface of a

cube and combined with an appropriate interpolation scheme. The paper presents a brief description of the cubed-

sphere model and a comparison of it with the spherical harmonic model. The model was configured to achieve a

desired accuracy so that dynamical tests, e.g., evaluation of the integration constant, closely approximate that of the

spherical harmonic model. The new model closely approximates the spherical harmonic model, with propagated

orbits deviating by a fraction of a millimeter at or above feasible Earth-centered altitudes.

Introduction

A LTHOUGH a sphere is an ubiquitous object, constructing a
local basis on it has proven difficult. The basis functions most

commonly used for a sphere are the spherical harmonics. One
solution of Laplace’s equation uses spherical harmonics to solve a
boundary-value problem on the surface of a sphere. A solution in
the spherical system of coordinates is used to construct geopotential
models, such as
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where r, �, and � are the radius, geocentric latitude, and longitude,
respectively; � is the gravitation parameter; R is the radius of the
primary body; Pn;m is the associated Legendre polynomial of degree
and order n and m; and the coefficients Cn;m and Sn;m describe the
geopotential model. Gravitational acceleration, which is required for
most applications, is found by evaluating rU.

When using the spherical harmonics, model accuracy improves by
increasing the degree and order. As demand for improved gravity-
model accuracy increases, so do the computational resources
required for model evaluation. Additionally, orbits about bodies with
irregular mass distributions, such as the moon, require a high-degree
model to properly propagate an orbit [1]. Unfortunately, an increase
in the degree and order of the model by a factor of 10 results in
computation time increasing by a factor of 100 [2]. Interpolation
models have been developed to make evaluation faster. Some of these
models preserve the spherical coordinate system [3,4], while others
drastically reformulate the evaluation of the gravity field [5,6].

Each term of the spherical harmonic model describes a variation in
the geopotential mapped over the complete sphere. For example, the
J2 term describes the equatorial deviation from a sphere for all
longitudes. Hence, each term is part of a global model. Unfortunately,
the spherical harmonic model is unable to meet the demands for
regional representations [7]. Several alternative methods have been
explored to localize the gravity field for these scientific applications
[8,9].

A new model, the cubed sphere, was developed to localize the
representation of the gravity field and decrease the model evaluation
time [2]. At its core, the cubed sphere is an interpolation model
that relies on a localized representation defined on the surface of a
segmented cube. We explore applications of the cubed-sphere model
to orbit propagation: particularly, how it compares with the spherical
harmonic model solutions.

Cubed-Sphere Model

Originally proposed by Beylkin and Cramer [2], the cubed-sphere
model defines a new method to compute geopotential and accel-
eration. Essentially, the sphere is mapped to a cube with a new
coordinate system defined on each face. Each face is segmented by a
uniform grid, and interpolation is performed to find the acceleration.
Multiple spheres, each mapped to a cube, are nested within each
other, and interpolation is performed between adjacent shells to
account for the acceleration variation in the radial direction. The
mapping of a sphere to a cube is illustrated in Fig. 1. A grid-spacing
scheme is established, with values for acceleration precomputed
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Model Description

The cubed-sphere model may be used to approximate any number
of elements defined on a primary body. For example, it can approxi-
mate each component of acceleration, or the gravity potential. The
accelerations are not directly derived from the potential, but are stored
separately (in a submodel). Thus, for a model to provide both
potential and three components of acceleration, values of all four
parameters are stored at each point for future interpolation. In the
following sections, any reference to modeling the gravity potential
may also be applied to modeling acceleration (with the appropriate
adjustments). Although the cubed-sphere model has been described
in the literature [2], a more detailed description is included here for
the purpose of clarity.

The cubed-sphere model is currently derived from an existing
gravity model, hereafter called the base model. Although other
models suchas apolyhedronormasconmaybeused,wecurrently use
the spherical harmonic model as the base model. In the cubed-sphere
model, the first four terms of the spherical harmonic expansion [i.e.,
the two-body term, J2, and the ���2;1 and ���2;2 terms] are used
directly. The cubed-sphere model does not include the lower-order
terms to reduce the range of approximated values, reducing the cost of
maintaining accuracy in the local model. The geopotential values
computed by the remaining terms in the base model are then
represented by the basis functions on the surface of the cube.

Temporal variations, such as solid or liquid tides, influence the
geopotential. These variations mostly affect lower-degree terms of
the potential. The cubed sphere only models terms of degree greater
than or equal to a chosen minimum degree and order: in this case, 3.
This parameter may be adjusted to allow for perturbations in the
lower-degree terms, whereas higher-degree terms are expressed in
the cubed-sphere formulation. Of course, this may slightly affect
computation time.

A key parameter of the cubed-sphere model is the grid size N.
Similar to the degree and order of the spherical harmonic model, the
grid size defines the density of the grid on each cube face and is a
measure of model fidelity. For a given altitude, the values of latitude
and longitude are segmented such that
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relatively large variations in the gravity field as location changes.
This is especially true along coastal and mountain regions. As
discussed in [2], the cubed sphere was originally developed with
multiresolution techniques in mind. However, adjusting the grid
density to these levels reveals noise in the original spherical
harmonics terms. The noise could be removed, which effectively
modifies some higher-degree terms. Thus, the cubed sphere would
no longer agree with the spherical harmonic model, which may
currently cause resistance to its use. Additionally, early tests of the
model for [2] demonstrated only small gains in speed as a result of
such change and only a marginal decrease in memory required.

A user-specified number of nested concentric shells are required
for interpolation in the radial direction. Shell spacing is determined
by defining a set number of points (hj) equally spaced in the interval
[0, 1]. Shell locations are then
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Integration (Jacobi) Constant Comparisons

A given geopotential model must satisfy the Laplace equation:
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Unfortunately, the direct calculation of the second derivatives within
the cubed-sphere model from accelerations results in the loss of
accuracy of one–two digits. To avoid such a loss of accuracy, values
of the derivatives may be added to the model based on the variational
equations of the spherical harmonic model. (Of course, this will
almost double the file size.)



bottom subplot portrays the relative performance of trends in the
integration-constant variations. For each orbit, we perform a linear fit



mean at these lower altitudes, indicating a relatively small number of
tests increase the mean value. Again, the models closely agree for
higher altitudes, as indicated by the mean and median values with
small error bars.

Results for the CS-162 model are provided in Fig. 7. Note that







Similarly, we compute the Fourier coefficients of g in terms of
interpolating splines:
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The B-splines and the interpolating splines are related by (see, for
example, [16])
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