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A neural correlate of parametric working memory is a stimulus-specific rise in neuron firing rate that persists long after the stimulus is
removed. Network models with local excitation and broad inhibition support persistent neural activity, linking network architecture and
parametric working memory. Cortical neurons receive noisy input fluctuations that cause persistent activity to diffusively wander about
the network, degrading memory over time. We explore how cortical architecture that supports parametric working memory affects the
diffusion of persistent neural activity. Studying both a spiking network and a simplified potential well model, we show that spatially
heterogeneous excitatory coupling stabilizes a discrete number of persistent states, reducing the diffusion of persistent activity over the
network. However, heterogeneous coupling also coarse-grains the stimulus representation space, limiting the storage capacity of para-
metricworkingmemory. The storage errors due to coarse-graining anddiffusion tradeoff so that information transfer between the initial
and recalled stimulus is optimized at a fixed network heterogeneity. For sufficiently long delay times, the optimal number of attractors is
less than thenumberofpossible stimuli, suggesting thatmemorynetworks canunder-represent stimulus space tooptimizeperformance.



tion at a specific degree of network heterogeneity. For a large
number of stimulus locations and long retention times, we show



into synaptic conductance by the spatially decaying functions (Fig. 1A)
expressed:

W�,��� j,�k� � exp �cos



Diffusion in the potential well model. To analyze the diffusive dynamics
of the bump, we studied an idealized model of bump motion. In this
model, the bump position (t) obeys the stochastic differential equation,
(



To calculate the probability density p(, t), we simulated 10,000 real-
izations of Equation 2 using an Euler–Maruyama integration scheme
with a timestep dt � 0.001 from t � 0 to t � 10 s (Fig. 4B,C). The effective
diffusion coefficient was calculated as the gradient of the variance across



both fast-acting AMPA and slow-acting NMDA components
(see Materials and Methods). Third, feedback connections
from interneurons are broadly tuned (Fig. 1A, blue line). With
these architectural features, neurons in the network respond
to a transient stimulus (Fig. 1



and diffusion over the potential landscape occurs in a punctuated
fashion. Across many trials, the probability p(�, t) of finding the
particle at position � at time t



The transition Y(0) 3 Y(T) involves
diffusion across the network, which also
degrades storage. To compute the proba-



nmax 	 m in both the potential well model and the spiking model
(Fig. 7A,B; T � 10 s). The value nmax marks a compromise be-
tween quantization and diffusion errors. For the potential well
model, the optimal heterogeneity nmax decreases as the delay time
T increases (Fig. 7C), since diffusion error grows as T increases. In
total, we find that for sufficiently long delay times the degree of
heterogeneity n should be less than the stimulus size m to opti-
mize information transfer.

For a fixed delay time T, varying the number of possible inputs
m also shifts nmax. Diffusion error is independent of the number
of possible inputs m; however, the total possible information
increases with the number of inputs m. For small m, we have that
nmax � m since when n � m, the quantization error is always zero
and network diffusion increases with n (Fig. 8A,B; m � 4). How-
ever, for larger m, we find nmax 	 m, due to a compromise be-
tween quantization error and diffusion (Fig. 8A,B; m � 16).
These results hold for the potential well model over a wide range
of m (Fig. 8C). Overall, we highlight that a combination of vary-
ing T and m uncovers the effect of diffusion and quantization

error on mutual information in a working memory network. In
particular, for many combinations of T and m, an optimal spatial
heterogeneity for information transfer can be found.

The information I(X, Z) measures the general relation be-
tween X and Z, one that is decoder independent. However, in
psychophysical experiments, a reward is only given when the
recall is correct, i.e., X � Z. Thus, it is important to consider how
the probability of correct recall depends on the spatial heteroge-
neity of excitatory connections. In both the potential well and
spiking network models, the probability of correct recall is max-
imized for a fixed n 	 m when T is sufficiently long (Fig. 9A,B),
consistent with observations of I(X, Z) (Fig. 7A,B). The n that
maximizes the probability of correct recall decreases as storage
time increases (Fig. 9C), also in agreement with results using I(X,
Z) (Fig. 7C). The probability of correct recall provides a quanti-
fication of error that weights all incorrect responses the same. To
use knowledge of the spatial organization of the cue set in deter-
mining error, we also measure the impact of the number of at-
tractors on the angular difference between the recalled and cued

Figure 6. Noisy channel description of memory storage. A, Loading m possible initial conditions into n possible wells initially reduces information. After the storage period ( T), information may
have been lost due to hops between wells. B, Purely Gaussian probability density with the effective diffusion coefficient Deff calculated when n � 4 and � 2 � 0.16. The area of each filled portion
represents the probability of recalling the cue angle associated with that color. Each area corresponds to the probability of transitioning from the original state to that state pj3k. C, For n � 8, the
effective diffusion coefficient Deff is larger, leading to faster spreading.
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stimulus position. Specifically, we compute the variance of the
difference between the recalled and input cue location X � Z. The
magnitude of the recall error is minimized for a fixed n 	 m (Fig.
9D,E), corroborating our findings for I(X, Z) and proportion
correct. Thus, our core finding that information transfer across
the memory network is maximized for a specific degree of spatial
heterogeneity also holds for a measure of task performance.

Discussion
We have outlined how both neural architecture and noisy fluctu-
ations determine error in working memory codes. In working
memory networks, the position of a bump in spiking activity
encodes the memory of a stimulus, and input fluctuations cause
diffusion of the bump position, which degrades the memory.
Spatially heterogeneous recurrent excitation reduces the diffu-



of information between the stimulus and the memory output by
tuning the spatial heterogeneity of recurrent excitation. We
found that the ideal heterogeneity gives a number of attractors in
the network nmax, which can be less than the number of possible
inputs to the network m.

Robust bump dynamics through quantization
Networks whose dynamics lie on a continuum attractor have
steady-state activity that can be altered by arbitrarily weak noise
and input (Bogacz et al., 2006). The advantage of this feature is
that two stimuli with an arbitrarily fine distinction can be reliably
stored and distinguished upon recall. However, this structure
requires fine-tuning of network architecture, since any paramet-



position is possible, but motion between attractors will depend on �
and will be difficult to interpret as a simple diffusion process. Nev-
ertheless, we expect that the specifics of spatially uneven heteroge-
neous coupling will significantly impact both the attractor
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