
important dynamical processes on complex networks. Based on this fact, we present a quantitative,
objective characterization of the dynamical importance of network nodes and links in terms of their effect
on the largest eigenvalue. We show how our characterization of the dynamical importance of nodes can be
affected by degree-degree correlations and network community structure. We discuss how our charac-
terization can be used to optimize techniques for controlling certain network dynamical processes and
apply our results to real networks.
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In recent years, there has been much interest in the study
of the structure of networks arising from real world sys-
tems, of dynamical processes taking place on networks,
and of how network structure impacts such dynamics [1].
The largest eigenvalue of the network adjacency matrix
(which we denote �) is the key quantity determining a
variety of different dynamical processes on networks. For
example, (i) for a heterogeneous collection of chaotic and/
or periodic dynamical systems coupled by a network of
connections, the critical coupling strength [2] for the emer-
gence of coherence is proportional to 1=�; (ii) in a class of
percolation problems on directed networks [closely related
to the problem of epidemic spreading [3] ], the condition
for the emergence of a giant component also involves � [4].
For other examples where � plays a similar role, see
Refs. [5–7].

In many situations it might be desirable to control dy-
namical processes that take place on networks. For ex-
ample, in epidemic spreading, one would like to increaseN nodes,

and we associate to it a N � N adjacency matrix whose
elements A

ij are positive if there is a link going from node i
to node j with i � j and zero otherwise (Aii � 0). We
denote the largest eigenvalue of A by �, where Au � �u
and vTA � �vT with u and v denoting the right and left
eigenvectors of A. According to Perron’s theorem [7], of all
the eigenvalues of A
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 �A� �A��u� �u� � ��� ����u� �u� (3)

by vT and neglecting second order terms vT�A�u and
��vT�u, we obtain �� � vT�Au=vTu. Upon removal of
edge i! j, the perturbation matrix is ��A�lm �
�Aij�il�jm, and therefore

 Î ij �
Aijviuj

�vTu
: (4)

We now examine the effect of removing node k. Upon its
removal, the perturbation matrix is given by ��A�lm �
�Alm��lk � �mk�. However, in this case we cannot assume
�u is small as we did before, since �uk � �uk (the left
and right eigenvectors have zero kth entry after the removal
of node k). Therefore, we set �u � �u� ukêk, where êk is
the unit vector for the k component, and we assume �u is � uiN1km95 Tm
(iNa(�u))Tf
10.4607 0 0 10.460791 (e)]�



Our next example is motivated by the fact that it is
sometimes observed that real networks can be subdivided



where m is the number of removed nodes and ��m� is the
largest eigenvalue of the resulting network. We see that
using the dynamical importance (solid lines) greatly im-
proves the results over using the degree (short dashed


