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A natural generalization of the Hénon map of the plane is a quadratic diffeomorphism that has a quadratic inverse.
We sstudy the case when these maps are volume preserving, which generalizes the the family of symplectic quadratic
maps studied by Moser. In this paper we obtain a characterization of tliese maps for dimension four and less. In
addition, we use Moser's result to construct a subfamily of in n dimensions.

1. Introduction

Some of the simplest nonlinear systems are given by quadratic maps: for example the logistic map
in one dimension and the quadratic map introduced by Hénon [14, 15] in the plane. It is easy to see
that any quadratic, one dimensional map with a fixed point is afindy conjugate to the logistic map,
xy-* rx{\ —Xx). In asimilar way, Hénon showed that a generic quadratic area-preserving mapping of
the plane can be written in normal form as

k+y+x»

. - -X
which has a single parameter k. )

Hénon's study can be generalized in several directions. Moser [22] studied a class of quadratic
symplectic maps, having obtained a useful decomposition and normal form. For example, when the
map isquadratic and symplecticin M, Moser [22,19] showed that it can be written as the composition
of twon in 5549 in o]
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where W is a homogeneous cubic polynomial in p. The map given in (1) is a particular example of
what we call a quadratic shear.

Definition 1. A quadratic shear is a bijective map of the form
X~ fix) = X+ -Qix), (2

where Q{x) is avector of homogeneous, quadratic polynomials such that f~* isalso a quadratic map.

In this way Moser's result isbasically a characterization of all symplectic quadratic shears. One of
the remarkable aspects of this is that quadratic symplectic maps necessarily have quadratic inverses.
In general we can write a quadratic map on E" as the composition of an affine map with a quadratic
map that is zero at the origin and is the identity at linear order:

X M fix) = xo + L{x +-Q{X)), 3

where SQ S M", L is a matrix, and Qix) is a vector of homogeneous, quadratic polynomials. Note
that if the map / isvolume preserving then it is necessary that L satisfies det(L) = 1. Similarly if /
is symplectic, then L must be a symplectic matrix. Of course, the quadratic terms also can not be
chosen arbitrarily in these cases.

Polynomial maps are of interest from a mathematical perspective. Much work has been done
on the "Cremona maps", that is polynomial maps with constant Jacobians [8]. An interesting
mathematical problem concerning such maps maps",
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ii)=>i) By assumption, det(D/(a;)) and det(D/ ~(/(&))) are polynomials in xi,X2,-- ,&,.
However, differentiation of f~"(f{x)) = x gives
det{ Dr\f{x)))detiDf{x))=",

and therefore, since both are polynomials, det{Df{x)) has to be a constant independent of x. We
notice that det{Df{x)) = det{D/(0)) =
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We will see that for the
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A map / is symplectic with respect to w if u}{Dfv,Dfv') = u{v,V) for al
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4. Dimensions Three and Four

Following Coroliary 1, we would like to establish the stronger result that M(a)* = O for al x. In
this section x.
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KBAJIPATHqHbIE OTOBPAHtEHHH, COXPAHfIIOmMHE OBtEMDbI: FACUIHFE-
HHE PESYyJILTATOB MO3EPA

llocmynujia e pedaKuuio 11 umjia 1998 z

PaccMOTpeHHo ofioSmeKHe oTo6pa»eHHH XenoHa «JIH njiocKOCTH, KOTopbiM HenneTCfl KBaflpaTHiHbifl fIH({)(})eoMop-
$H3M, HMeiomHft KBaflpaxHiHLifl o(SpaTH3>nop-



