91Ƭ

Skip to main content

Profile: Garry Rumbles

Profile picture of Garry Rumbles with abstract banner graphics in the background

Dr. Garry Rumbles, who holds a joint appointment as a senior research fellow at the National Renewable Energy Laboratory (NREL) and an Adjoint Professor of Chemistry at CU Boulder recently stepped down as the Associate Director of RASEI. Among a host of other awards and recognition, Garry was recently elected to the 2022 class of AAAS Fellows.

Garry joined NREL in 2000 and has been a RASEI Fellow since the Institute’s inception in 2009. We sit down to find out a little more about Garry, how he came to be part of RASEI and looking forward. 

 

Where are you from?

Essex, in the south of England. I grew up on a market garden and cereal farm that was far away from the middle of nowhere.

 

Tell us something from your childhood.

Working on the farm and with my family took up a lot of time. Football and family. I took up sailing when I was 17 and spent a lot of time on the rivers Blackwater and Crouch, both of which offer fantastic sailing! I met my wife, Lee, windsurfing in California, so the sport served me very well.

 

What did you want to be when you were growing up?

Pilot in the Royal Air Force


 

What do you enjoy doing outside of work?

Spending time with family, sailing, running, watching football. Skiing. I am a telemark skier, which Art Nozik got me into – it is great because everyone looks at you as though you are amazing, even if you are not!

 

Who have been some strong influences in your life?

George Porter. Art Nozik. My high school teachers. Where I grew up there were very few people who went on to higher education and university. In my class 6 people went to university, which doubled the number of people from that school who went on to higher education (the school opened in 1958). There was not a good structure or support for getting into university and my high school teachers took someone who had few academic aspirations and ignited a curiosity in chemistry and electronics.

 

How did you choose your area of research?

When I finished my undergraduate, I was fascinated by lasers, and that is what really hooked me. I went to work with Prof. David Phillips at the Royal Institution in London. I got to work on lasers and live in London! It was a great research environment and where I first connected with (Professor Sir) George Porter. He was a fantastic scientist who was endlessly curious. I remember being on a call with him on a Sunday evening where we spent an hour discussing whether a mole of yellow or red photons had more entropy. A Nobel Prize winner talking to me about this! I received a copy of his paper on the thermodynamics through the internal mail the next day.  

What would you say to folks considering a similar research path?

Seek quality mentors. Don’t be modest, but don’t be arrogant – be confident. Talk to lots of people in research. Get advice, don’t try and do it all yourself. You need to know what you don’t know, and how to be successful. Learn the basics and make sure that you have a really strong foundation, not just in the sciences. You need to be able to communicate, present, and write effectively.

 

What is an important lesson you have taken from your work in research?

You need to know your “So what?” and “what is the impact?”. You need to be able to tell people why what you are doing is significant. One of the most important things, whether for putting together proposals, presenting your work, writing a paper, or talking to sponsors, is being able to concisely provide and articulate the conclusion. Give me the why – impress me!

 

Describe some of your philosophies toward approaching scientific challenges.

Connect with great scientists interested in collaboration. While I was at Imperial collaboration was not a big focus, things were rather siloed. I did get one chance to work on a collaboration with a team at the University of Cambridge, but I was not central, I was more of a satellite player. It was one of the things that was so attractive at NREL – you are integrated and work as part of ‘real’ team. NREL, with folks like Art Nozik, fosters an environment where you can be an intellectual leader, not just an ancillary participant, and this team atmosphere was something I really enjoyed. RASEI brings together the academic and National lab approaches, which is one of the things that makes it an exciting space to operate. 

Value the human aspects of research-based teamwork. Being part of a team provides such a great opportunity for learning and discovering new approaches. It also gives you a chance to learn more about people and appreciate the balance and recognition of the different things people bring to projects. I have worked with some extremely talented people who go on to do things outside of research – which is fantastic. Everyone’s path is different, and everyone has different responsibilities and drives. Working as part of close-knit teams has given me a chance to appreciate this.

 

Tell us a bit about the impacts you see RASEI having in the future.

Institutes provide the opportunity for agility and being able to address large, cross-disciplinary challenges – something that Departments are not always able to do. Departments in the system provide the foundation for the research endeavor that enable Institutes to operate. Institutes exist in this space where folks can come together and interact, be more dynamic than otherwise possible. For RASEI the partnership with NREL really advances this idea.

Institutes act to bridge gaps between Departments, and to fill in gaps that are perhaps not normally covered, and this is where things can be exciting, where new ideas can come about.

I am looking forward to watching RASEI grow and have a reputation that demonstrates how much of a strength the partnership between CU Boulder and NREL is. This kind of organizational research collaboration is extremely powerful and needs to be lauded. A partnership like this, that has agility and the ability to pivot, is not only a great place to perform research, but is also going to be essential in how we attack new challenges.